sample recorder

This commit is contained in:
jreinking 2020-12-05 19:14:46 +01:00
parent 05a304948b
commit a2041ada2a
5 changed files with 61 additions and 45 deletions

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,53 +1,69 @@
# import sounddevice as sd
# from scipy.io.wavfile import write
# import scipy
# import time
# fs = 44200 # Sample rate
# snippets = []
# for i in range (5):
# seconds = 1 # Duration of recording
# myrecording = sd.rec(int(seconds * fs), samplerate=fs, channels=2)
# snippets.append(myrecording)
# sd.wait()
# for i in range (5):
# write('output{}.wav'.format(i), fs, snippets[i])
# sd.play(c, fs)
# sd.wait()
from scipy.io.wavfile import read
import numpy as np
from numpy import*
from scipy.io.wavfile import read
from scipy.io.wavfile import write
import matplotlib.pyplot as plt
a=read("/home/jreinking/Projekte/doorbell/raspberry-pi-projects/src/output2.wav")
print(a)
# plt.plot(list(map(lambda x: x[0], a[1])))
# plt.show()
import scipy
import sounddevice as sd
import time
a = read("/home/jreinking/Projekte/doorbell/raspberry-pi-projects/res/klingel_aufnahme_microphne_cut.wav")
# print(a)
# print(len(a[1]))
a = a[1]
def chunks(lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i:i + n]
def compress(a):
a = chunks(a, 700)
a = list(map(lambda x : mean(x), a))
return a
def dtw(s, t):
n, m = len(s), len(t)
dtw_matrix = np.zeros((n+1, m+1))
for i in range(n+1):
for j in range(m+1):
dtw_matrix[i, j] = np.inf
dtw_matrix[0, 0] = 0
for i in range(1, n+1):
for j in range(1, m+1):
cost = abs(s[i-1] - t[j-1])
# take last min from a square box
last_min = np.min([dtw_matrix[i-1, j], dtw_matrix[i, j-1], dtw_matrix[i-1, j-1]])
dtw_matrix[i, j] = cost + last_min
return dtw_matrix
n, m = len(s), len(t)
dtw_matrix = np.zeros((n+1, m+1))
for i in range(n+1):
for j in range(m+1):
dtw_matrix[i, j] = np.inf
dtw_matrix[0, 0] = 0
for i in range(1, n+1):
for j in range(1, m+1):
cost = abs(s[i-1] - t[j-1])
# take last min from a square box
last_min = np.min([dtw_matrix[i-1, j], dtw_matrix[i, j-1], dtw_matrix[i-1, j-1]])
dtw_matrix[i, j] = cost + last_min
return dtw_matrix
m = dtw(list(map(lambda x: x[0], a[1])), list(map(lambda x: x[0], a[1])))
print(m)
# m = dtw(a, a)
# print(m)
NUMBER_OF_SNIPPETS = 5
SAMPLE_RATE = 44200
SECONDS = (400000 / SAMPLE_RATE) / NUMBER_OF_SNIPPETS
snippets = []
i = 0
while True:
myrecording = sd.rec(int(SECONDS * SAMPLE_RATE), samplerate=SAMPLE_RATE, channels=2)
snippets.append(myrecording)
sd.wait()
if len(snippets) > NUMBER_OF_SNIPPETS:
snippets = snippets[1:]
c = scipy.vstack(snippets)
write("sample_{}.wav".format(i), SAMPLE_RATE, c)
i += 1
#c = compress(c)
#plt.plot(c)
#plt.show()
# print(c)
# print(len(list(map(lambda x : x[0], c))))
# sd.play(c, SAMPLE_RATE)
# sd.wait()
# print('======')
# c = scipy.vstack((snippets[0], snippets[1], snippets[2], snippets[3], snippets[4]))