70 lines
1.6 KiB
Python
70 lines
1.6 KiB
Python
from numpy import*
|
|
from scipy.io.wavfile import read
|
|
from scipy.io.wavfile import write
|
|
import matplotlib.pyplot as plt
|
|
import scipy
|
|
import sounddevice as sd
|
|
import time
|
|
|
|
a = read("/home/jreinking/Projekte/doorbell/raspberry-pi-projects/res/klingel_aufnahme_microphne_cut.wav")
|
|
# print(a)
|
|
# print(len(a[1]))
|
|
a = a[1]
|
|
|
|
def chunks(lst, n):
|
|
"""Yield successive n-sized chunks from lst."""
|
|
for i in range(0, len(lst), n):
|
|
yield lst[i:i + n]
|
|
|
|
|
|
def compress(a):
|
|
a = chunks(a, 700)
|
|
a = list(map(lambda x : mean(x), a))
|
|
return a
|
|
|
|
def dtw(s, t):
|
|
n, m = len(s), len(t)
|
|
dtw_matrix = np.zeros((n+1, m+1))
|
|
for i in range(n+1):
|
|
for j in range(m+1):
|
|
dtw_matrix[i, j] = np.inf
|
|
dtw_matrix[0, 0] = 0
|
|
|
|
for i in range(1, n+1):
|
|
for j in range(1, m+1):
|
|
cost = abs(s[i-1] - t[j-1])
|
|
# take last min from a square box
|
|
last_min = np.min([dtw_matrix[i-1, j], dtw_matrix[i, j-1], dtw_matrix[i-1, j-1]])
|
|
dtw_matrix[i, j] = cost + last_min
|
|
return dtw_matrix
|
|
|
|
# m = dtw(a, a)
|
|
# print(m)
|
|
|
|
NUMBER_OF_SNIPPETS = 5
|
|
SAMPLE_RATE = 44200
|
|
SECONDS = (400000 / SAMPLE_RATE) / NUMBER_OF_SNIPPETS
|
|
|
|
snippets = []
|
|
i = 0
|
|
while True:
|
|
myrecording = sd.rec(int(SECONDS * SAMPLE_RATE), samplerate=SAMPLE_RATE, channels=2)
|
|
snippets.append(myrecording)
|
|
sd.wait()
|
|
|
|
if len(snippets) > NUMBER_OF_SNIPPETS:
|
|
snippets = snippets[1:]
|
|
c = scipy.vstack(snippets)
|
|
write("sample_{}.wav".format(i), SAMPLE_RATE, c)
|
|
i += 1
|
|
#c = compress(c)
|
|
#plt.plot(c)
|
|
#plt.show()
|
|
# print(c)
|
|
# print(len(list(map(lambda x : x[0], c))))
|
|
# sd.play(c, SAMPLE_RATE)
|
|
# sd.wait()
|
|
|
|
|
|
|